Complexity Beyond Computation

Liu Yuting
July 17, 2025

1 About Complexity

To appreciate the study of complexity, we may start with what Feynman held as
the most important knowledge humans possess: Everything is made of atoms.
Atoms form molecules. Molecules form biological cells. Biological cells form
organs. Organs form the human body. The human body consists of vast amount
of atoms working magically together. The study of complexity is to explain that
magic.

So far, no scientific results fully achieve the goal set in the opening para-
graph. Although there are claims that some notion solves the entire mystery of
complexity, all are baseless and we will refute one such claim in this manuscript.

1.1 Observations

Although the simplicity of modern user interfaces hides great amount of com-
plexities from us, we sometimes still experience the consequences of complexity.
Weather can be unpredictable. Financial markets can be volatile. The fate of
the world can be uncertain.

Sciences have found ways to cope with complexities. Axiomatic systems de-
rive complex statements from simple axioms. Complex motions may be reduced
to a set of physical laws. Darwinian evolution is said to account for the com-
plexities of life. These explanations, though successful, all suffer deficiencies.
Godel proved the limitation of axiomatic systems in deriving all mathematical
truths in second order arithmetic. Quantum mechanics and general relativity
can not easily reach coherence with each other. The similarity between certain
biological forms and automata seems to suggest life has a algorithmic aspect
not explored by Darwin.

It’s against this unsatisfactory background that modern complexity stud-
ies emerged. Compared with scheme theory in algebraic geometry, complexity
studies feel like mud. It’s not because the subject matter isn’t attractive, but
we don’t have very great tools at hand.

1.2 Modern Complexity Studies

Because there is no consensus how to define complexity, modern complexity
studies diverge in subject matter as well as methodology. For some, complexity
means randomness. For others, it means logical depth. The lack of agreement
on the definition of complexity makes summarizing the literature difficult, so
here only a few well-established approaches are described.



1.2.1 Chaos

The study of chaotic dynamics features unpredictability and randomness in so-
lutions to differential equations or iterative maps, that their trajectories are
highly sensitive to initial conditions. It’s often said that the long-term behav-
ior of chaotic orbits is unpredictable, but there are many possibilities what
‘long-term’ means. From time to time, it may be ‘eventually’ or ‘exponentially’
depending on the dynamical system under consideration.

Although chaotic orbits may seem a mess, hope to gauge their evolution
isn’t lost. Occasionally, the existence of bounds, topologies, or geometries can
be proven to describe the long-term stability of chaotic orbits, that is, they may
be unpredictable, but won’t fall apart.

A interesting question in chaos theory is when and how a system transitions
from order to chaos. Although it’s hard to answer such questions, measures of
order/disorder can often be found so that we can see a transition indeed occurs.

Probably one of the most astonishing results in chaos theory is Sharkovskii’s
Theorem, that there is a hierarchy of periods in chaotic maps. Despite being in
disorder, there is still structure!

Overall, chaos theory’s contribution to complexity study is how unpredictabil-
ity happens. There is no simple way to accurately pin down the long-term
behavior of chaotic orbits.

1.2.2 Computational Complexity

The main measure of computational complexity is logical depth, that a complex
procedure requires more logical steps than a simple one. Although the defini-
tion may seem elementary, the strength of computational complexity is greatly
amplified by the existence of universal Turing machines. Since universal Turing
machines can simulate all computations, there is a unified method to generate
all complexities in this characterization.

A obvious application of computational complexity is cryptography. A en-
cryption method is good if it requires astronomical logical steps to break it.

But, the computational approach runs much deeper into sciences. Take
biology for example. Since genetic materials are discrete data structures, many
biological patterns found in nature resemble the result of a algorithm applied
to genetic data. In fact, thinking in terms of code has been hugely successful in
molecular biology, that DNA codifies proteins.

Measuring in logical depth, the computational approach allows a systematic
classification of complexity in terms of P, NP, PSPACE, etc. The class NP is
particularly interesting as there are a plethora of NP-complete problems that if
one of them falls in P, the entire NP is equal to P.

1.2.3 PDE

The PDE approach to complexity study is often based on physical laws. Whether
it’s linear Schrédinger equation, or nonlinear Navier—Stokes equations, PDE
gives a concise rule how such systems assemble, interact, and evolve.

Contrary to the computational approach, one significant drawback of the
PDE approach is that there is no unified machinery in finding solutions. How-
ever, whenever applicable, like in the case of Schrédinger equation, the solution



often provides great insights into how complexity arises. Indeed, the whole
study of chemistry may be put on a solid foundation of quantum mechanics.

The difficulty in solving PDEs indicates that nature appears to be infinitely
subtle, capable of effortlessly generating solutions with high accuracy. Why can
nature solve PDEs that beset mathematicians?

1.3 Sense of Complexity

Since there is no agreement what complexity is, it’s impossible to satisfactorily
categorize the concept. Instead, there are sensible features when complexity is
encountered. Here, a few such features are discussed.

1.3.1 Hierarchy of Hardness

There is a hierarchy of hardness in machineries. If a machine A can do whatever
another machine B can do and more, then A is more complex than B. A example
is the progression from linear bounded automata to Turing machines. A partial
order system is naturally formed according to the functionalities of machines.

1.3.2 Nonlinearity

Nonlinearity is a very broad term. Usually, nonlinear systems are complex
because the superposition of states isn’t valid. These systems can generate
complex output from simple input. A particular example is cellular automaton.
There are many patterns in nature that resemble cellular automata.

1.3.3 Unpredictability and Randomness

The logistic map exhibits period doubling to chaos. The increase in unpre-
dictability and randomness signals increase in complexity. Shannon entropy
and Kolmogorov complexity are useful measures of randomness.

2 The Computational Paradigm

There are many approaches to complexity study. However, one approach, that
of computation, finds power to greatly expand into other areas.

2.1 Advantages of Computational Complexity

To understand the success of the computational paradigm, it requires a lot of
technical work. Here a brief explanation is provided to clarify how two pre-
viously mentioned approaches to complexity study, chaos and PDE, may be
covered by computation.

At first glance, the divergent behavior paramount in chaos seems to pro-
hibit all sorts of computational approach. However, with the aid of topological
estimates like the shadowing lemma, one may prove that although the true tra-
jectory of a given initial condition may not be computed, a computed trajectory
may still be very close to a true trajectory of a very close initial condition. Thus,
computation tells something about the system.



As for PDE, the success of computational fluid dynamics not only find ap-
plications in vehicle designs, but more importantly, demonstrates the need for
more powerful computers to solve more complex CFD problems. There seems
to be a correspondence between computational power and complexity of the
problem under consideration.

Overall, computation provided concrete solutions to abstract theories. In
this way, it gradually became the primary tool for complex study.

2.2 Principle of Computational Equivalence

With the establishment of the computational paradigm, radical ideas began
to emerge. One such idea is Stephen Wolfram’s Principle of Computational
Equivalence.

While traditional sciences view computation as a approximation to a spec-
ified model, Wolfram views computation as essential, and traditional models
are approximations. The tremendous power of this formulation lies in the fact
that there are universal Turing machines that can simulate all computations.
Therefore, there is a unified mechanism to generate all complex phenomena.

However, this seems too good to be true, and it’s the deficiencies in Wolfram’s
Principle of Computational Equivalence that lead to considerations beyond the
computational paradigm.

3 Beyond the Computational Paradigm

To put it simply, if complexities are computations, then life can be generated
on a ink-and-tape Turing machine, which is absurd. Here technical reasons why
Principle of Computational Equivalence is wrong are given.

3.1 Deficiencies of the Computational Paradigm

Pretty much of the deficiencies of the computational paradigm can be justified by
common sense. Though, it’s not clear what’s the path forward for the definition
of complexity.

3.1.1 Cracks from Within

The computational paradigm highlights the importance of Turing-completeness.
However, Turing-completeness alone suffers scale problems. For example, both
ink-and-tape Turing machines and sophisticated semiconductor chips can per-
form identical computations, but semiconductor chips are a lot more complex
and much faster. The computational paradigm doesn’t address the discrepancy.
There are serious implications. If computers were all in the form of ink-and-tape
Turing machines, there would be no iPhone.

Quantum computation provides another critique of the computational paradigm.
Although both classical and quantum computers can be Turing-complete, there
are quantum algorithms that run much faster than classical algorithms. That
is, time complexity much depends on architecture.



3.1.2 Cracks from Without

Modern spacecrafts have computer chips. However, it’s a fallacy to declare
that these spacecrafts are simply computers. Ordinary computers don’t go to
Mars. Therefore, although ordinary computers and spacecrafts may possess
identical computational power, their complexities can be quite different. While
ordinary people can perform computations like computers, albeit inefficiently,
most people don’t have the knowledge of designing complex spacecrafts for Mars.

Specifically, Principle of Computational Equivalence ignores statistical con-
cepts like evidence and geometrical concepts like dimension. It claims that they
are irrelevant if complexity is the main concern. Going to Mars is simply as
complex as pencil-and-paper computation, which is absurd.

In fact, recent research showed that knots may be put into a partial order
system according to some definition of complexity called ribbon concordance.
It uses basic tools like Morse theory. It’s hard to dismiss such results as being
irrelevant.

3.2 A Application

While the computational paradigm provides complexity hierarchy according to
computational power, it says nothing about the possible interaction between
computers of different capabilities. Such interactions are possible because of
computers can be topologically separated. It’s these interactions that made the
design of Apple’s Secure Enclave, and similar constructs, possible. Therefore,
going beyond the computational paradigm can be fruitful.

3.3 Summary of the Status Quo

The status of complexity study is still kind of muddy. No universal definition
of complexity can be given, no great tools can be applied, and no approach is
satisfactory. But if we are going to understand how the world works as a whole,
complexity study must be undertaken.

4 Relative Complexity Theory

Here we introduce relative complexity theory that overcomes the defects of
computational complexity theory. It’s summarized in a post on Glacier Studio
Blog.

4.1 Blog Post

Complexity Theory, April 13, 2024 Our goal is to produce a complexity
theory that properly addresses the role played by computation, statistics,
and geometry. It’s not a trivial task. As a first step, a outline of rela-
tive complexity is provided here to generalize Turing machines, so that
computational complexity becomes a special case.

We postulate that complexity depends on what cognitive instrument is
at work. A task that appears complex to a Turing machine may not be
complex to a probability process at all. A task that can not be performed



by a machinery is called too complex with respect to it. We always speak
of complexity with respect to a machinery.

Machineries may be put into a partial order system according to what tasks
they can perform. So, we can say that a Turing machine with a stochastic
register is more complex than the Turing machine part, because there are
tasks beyond computation.

Logical depth can be put into this picture by considering performing com-
putation on a Turing machine within certain number of steps. Kolmogorov
complexity can be put into this picture by considering what output a Tur-
ing machine can generate given certain length of input.

This theory can handle the following important case. Theories with differ-
ent geometrical structures may be Turing equivalent, but some are chiral,
while others are not. If we make the distinction between these machiner-
ies, we may say chirality is too complex for a simple universal non-chiral
cellular automaton.

This amounts to the fact that Wolfram’s classification of processes into
computational machineries with equivalent computational power is too
crude. They tell no difference between chiral and non-chiral theories.

Furthermore, we define easy as simple to do, hard as complex to do. A icon
simple to recognize may be complex to produce, which reflects the more
vague experience that simplicity isn’t always easy to achieve. Clearly, we
need more dimension theory to account for it in our complexity theory.

All the essential materials here are put forward in a form or another long
ago. Since recently there is renewed public interest in complexity the-
ory, we say it again so that the topic may be more broadly understood
and confusion may be avoided. We are tired of unnecessary and unjust
damages from public misunderstanding.

4.2 Elaboration
We explain what the blog post means.

4.2.1 Machineries and Tasks

A machinery is a well-defined object, like a stochastic register or a Turing ma-
chine.

A task is a true or false statement about a machinery. A task a machinery
can perform is a true statement about the machinery. A task a machinery can
not perform is a false statement about it, in which case, we also say that the
task is too complex for the machinery.

If we select a certain set of tasks, there may be additional structure like
poset. For example, a machinery that can perform task A and task B is said
to be more complex than a machinery that can perform task A but not task B,
with respect to the task structure. In this way, we say a Turing machine with
a stochastic register is more complex than the Turing machine part.



4.2.2 Reproducing Computational Complexity

Let M be a universal Turing machine, and M(n) be M running in less than or
equal to n steps. Tasks M can perform are computable functions. Logical depth
is reproduced when we consider M (n). For input size m, there is a minimal n,,
such that M (n,,) can perform the desired function, which means M can perform
the function in O(n,,) steps.

4.2.3 Geometry

Some machineries are endowed with geometric structures in addition to compu-
tational structures, like cellular automata.

Chirality, March 19, 2025 To explain chirality, just notice that a trefoil is
not isotopic to its reflection. In the case of cellular automata, non-chirality
can be defined as the condition that the rules are invariant under reflection,
so for all configurations, the reflection of a evolution is still a evolution
of the same rule. A chiral cellular automaton is not non-chiral. Game
of Life is non-chiral. Rule 110 is chiral. By appropriate embedding, one
can construct higher dimensional chiral cellular automata, as well as non-
chiral ones, from lower dimensional rules. Since both chiral and non-chiral
cellular automata can be Turing-complete, chirality is not explained by
computation. We can say chirality is too complex for Game of Life. One
of the consequences of our new relative complexity theory is that sciences
like medicine are not completely explained by computation. For example,
reflection of a molecule may no longer be effective medical treatment. Of
course, computation is useful, but Wolfram is wrong to say it’s everything.

Chirality finds application in physics. The Standard Model is a chiral theory.
While one may use non-chiral theories like electromagnetism and chiral theo-
ries like electroweak interactions to perform universal computation, our relative
complexity theory can tell the difference in chirality, but Wolfram’s classification
can not.

4.3 Applications

We outline several applications of relative complexity theory.

4.3.1 Beyond Generative Grammar

Godel’s incompleteness theorem may be reformulated in relative complexity
theory, that is, if a effectively axiomatized theory is consistent and contains
Peano arithmetic, proving its own consistency is too complex for the theory.
This led to a refutation of generative grammar.

Beyond Generative Grammar, September 15, 2018 The complexity of hu-
man language together with the success of modern computational com-
plexity research seduced many scientists into believing that there is a com-
putationally enumerable generative grammar for human language, even
innate, up to convention. However, ordinary human mind, given infinite
logical depth, is Turing-complete, complex enough to simulate all Turing



machines. Thus, the generative grammar doctrine demands that a par-
ticular computable enumeration is favored by nature at the expense of
all other computable enumerations. Does nature embrace grammatical
favoritism?

Arithmetic statements may be formulated with human language notation.
A true arithmetic statement may be considered grammatical under the
context of number theory. It follows that the generative grammar doctrine
entails a computable enumeration E for entire human knowledge about
arithmetic.

Suppose that computational logical depth is not a material constraint. All
human knowledge about arithmetic may be enumerated by E. Because E is
composed of true arithmetic statements, E can not include the statement
G that E is consistent, due to Godel’s incompleteness theorem for second
order arithmetic. The generative grammar doctrine declares that G can
not be learned, which sounds dubious enough, for readers already learned
it here.

It’s natural to speculate that E doesn’t exist under the context of number
theory, provided with sufficient computational resource and logical depth,
or reasonable size limit on E being humanly, not astronomical.

Generative grammar scientists, with luck, might discover sorts of state-
ment generators resembling true or false arithmetic statements and allow
us to run them in order to determine E.

Suppose we articulate and learn that the statement generator is consistent,
before the determination of E, even though we don’t know whether the
statement generator is actually consistent or not.

If the statement generator is inconsistent, it will prove both its own con-
sistency and inconsistency in finite logical depth. It follows that the state-
ment generator is not E. On the other hand, if the statement generator is
consistent and generative grammar scientists identify it with E, E will not
prove its own consistency in finite logical depth, according to Gddel’s in-
completeness theorem. Thus, the learned statement G, that the statement
generator is consistent, can not be derived from E. Generative grammar
scientists claim that the successfully learned statement G is not learn-
able, which is absurd and proves that E doesn’t exist under the context
of number theory.

To be fair, there may exist humans of limited mental capacity that G
is not learnable. However, the existence of these humans deals another
fatal blow to generative grammar scientists who claim that humans share
a mother tongue. If G is learnable for some, but not others, G can not
possibly be a shared feature derived from common human genetic factors.

Generative grammar scientists may try to exclude arithmetic from hu-
man language, but since arithmetic is expressible with ordinary human
language, the exclusion elicits generative grammar scientists’ explicit den-
igration of human creativity.



4.3.2 Computability

Orbits and Computation, May 28, 2025 Demis Hassabis suggested that
simply because you can approximate nature with computation, it’s evi-
dence that nature is computational. However, every good student who
studied dynamical systems knew that’s wrong.

Shadowing lemma allows you to approximate a orbit computationally, but
Smale’s Horseshoe generates orbits corresponding to real numbers of which
computables are measure zero, that is, generic orbits aren’t computable.

4.3.3 Quantum Computers

Conventional quantum computers only use quantum mechanics to speed up
computation. Thus, the results about computability still hold for quantum
computers.

4.3.4 Ribbon Concordance

As a element in a poset can be defined by the set of elements less than or equal
to the element, ribbon concordance can be reformulated in relative complexity
theory by considering the collection of tasks for a knot K that there exists a
ribbon concordance from knot K’ to K.

Generalized Algorithms, August 30, 2024 People have been using the word
algorithm vaguely for centuries. Turing defined it as a Turing machine that
halts on all inputs. The entirety of computational complexity theory was
built upon it.

It’s therefore natural that our relative complexity theory requires a gen-
eralization of algorithms. While exact definitions are more precise, it’s
better just to think of it as a recipe for operating a machinery here.

The generalization is not without past attempts. Since the arrival of
parallel computing, it became clear that thinking in terms of a Turing
machine was not enough. But the proposed definitions were all related to
Turing machines, and not very general.

A Dbenefit of thinking in terms of generalized algorithms is that geometrical
processes find natural expressions. Ribbon concordance is a machinery to
produce more and more complex knots, for example. A algorithm can
mean to derive a knot with a Morse function.

As we have seen in relative complexity theory, computational complexity
is not a satisfactory characterization of real world complexities. By intro-
ducing generalized algorithms, we can talk about the complexity of real
world processes in very specific language. It’s a rich new field of study.



